Kristopher Kyle - Advances in Natural Language Processing for Language Assessment and Research: Exploring the Potential of Large Language Models for Evaluating Language Use and Proficiency
Action | Key |
---|---|
Play / Pause | K or space |
Mute / Unmute | M |
Toggle fullscreen mode | F |
Select next subtitles | C |
Select next audio track | A |
Toggle automatic slides maximization | V |
Seek 5s backward | left arrow |
Seek 5s forward | right arrow |
Seek 10s backward | shift + left arrow or J |
Seek 10s forward | shift + right arrow or L |
Seek 60s backward | control + left arrow |
Seek 60s forward | control + right arrow |
Seek 1 frame backward | alt + left arrow |
Seek 1 frame forward | alt + right arrow |
Decrease volume | shift + down arrow |
Increase volume | shift + up arrow |
Decrease playback rate | < |
Increase playback rate | > |
Seek to end | end |
Seek to beginning | beginning |
Si vous êtes abonné aux notifications, un e-mail vous sera envoyé pour toutes les annotations ajoutées.
Votre compte utilisateur n'a pas d'adresse e-mail.
Informations sur ce média
Professor Christopher Tyne's lecture covers 50 years of advancements in Natural Language Processing (NLP), focusing on Large Language Models (LLMs) and their implications for language assessment, research, and applications. The course discusses the concept of validity in language assessment, highlighting its importance in understanding the development and evaluation of language assessments that utilize NLP and LLMs. It explores the evolution of assessment methods, including automatic assessment tools, and the potential of LLMs to evaluate language skills, such as academic writing proficiency.